TEAMER IVC/ORPC Tow Body Camera System

James Joslin, Paul Gibbs, Paul Murphy, and Cassie Riel APL-UW

April 27, 2021

Oregon State University

System Cartoon

 Camera system tow body to be deployed from a small vessel upstream or to the side of the RivGen turbine.

Design Specifications

- Environmental Operating Conditions:
 - Water temperature range: -1.0° to 15°C
 - Peak current speed: 2.6 m/s (assuming stationary vessel)
 - Current range: 1.6 to 2.4 m/s
 - % turbulence: 18 to 25%
- Field of view: [degrees vertical and horizontal] 25deg
 - Focal range: [m] 1m to 5m (assuming you are looking straight down)
 - 7.5m to 12m (assuming you are looking at an angle)
 - Preference is: angle
- Deployment duration: [hours/days/weeks]
 - In the water at least a week ahead of the smolt outmigration (ice-out limited)
 - In the water during priority periods; May 21- June 10 and June 25-July 15
 - Up to 8 hours a day during priority periods while device is operating
 - 100% duty cycle while onsite

System Overview

- Camera System
 - Stereo machine vision cameras with 2 high power LED lights
 - Control bottle for power and comms distribution.
- Tow Body
 - Instrument configuration options for viewing angle adjustment
 - Adjustable elevators and pick point location for towing angle control
- Deck Controls
 - Single cable umbilical with 12 and 48 VDC power supplies
 - Control and data acquisition from laptop or similar computer

Camera System

- Two options for instrumentation:
 - Both options fit this space and pattern, similar size housings
 - Option 1: APL build
 - Option 2: Outside build with Sexton camera housings, DSPL lights, and BlueRobotics control housing
- Blackfly S GigE 5 megapixel cameras
- High power LED lights with either continuous or strobed operation modes
- Controller for comms integration to a single cable, camera synchronization, and power

PMaxeitching to cameras and lights

Cameras Lights

Pivoting Mount

Tow Body

- Hydrodynamic profile independent of instrument orientation
- Built from waterjet or laser cut parts with simple L

Tow Body Adjustments

- Camera system angle adjustment
- Camera system mounting options
 - Can be mounted for forward, back, 45 degrees or either side view orientations
- Tow point connection options
 - Adjusting tow point will change tow body orientation during operations
- Elevator angle adjustment (optional)
- Spoiler (optional)

Umbilical/Tether

- SubConn 13 pin power and Ethernet cable
 - Cat 5e Ethernet connection
 - 4x power conductors
 - Strain relief on tow body end
- 3/8" spectra or similar on a 12 VDC winch on pivoting davit
- Backup float on short tether above tow body to limit depth

SubConn Power Ethernet Circular - 13 contacts

12 VDC Winch

Power Supply/Control Computer

- Computer: Laptop or similar with follow Hagovo ThinkPad specifications
 - 4 core CPU minimum
 - Network card with 1 GB ethernet port
 - NVIDIA graphics card with CUDA cores
 - Memory for data storage: ~1 TB per 8 hour day of continuous 10 FPS stereo images
- Power supply:
 - 2 kw ac generator or similar to plug in computer and DC converters
 - 48 VDC converter with minimum of 300 watts
 (\$36)
 AC to DC 0-48 volt
 - 12 VDC converter with minimum of 50 watts (\$366)/er Supply

Bill of Materials

TEAMER IVC/ORPC Camera Tow Body: Summary

	Cost		
	Option 1	Option 2	Notes
Camera System	\$19,196	\$18,153	
Tow Body	\$2,805		
Deck Controls	\$1,927		Does not include generator.
Fabrication and Assembly	\$14,426		Support for ordering parts, fabrication of custom parts, and system assembly
Tank Testing	\$10,991		In water testing to confirm operations and camera calibration
Field Testing	\$7,246		Vessel testing to confirm tow orientation
Totals:	\$56,591	\$55,548	

 Google Drive Link: https://docs.google.com/spreadsheets/d/lwnk8dS NcillF92r5RzfluZxf9boBSjnzak7QTuPJObc/edit?us p=sharing

Fabrication Costs

- Primary cost is the camera system, best option for cost reduction would be to switch to BlueRobotics camera housings.
- APL testing support includes test tank calibration and vessel towing.

RV Inferno

Acknowledgements

Brian Polagye, Chris Bassett, Paul Murphy, Paul Gibbs, and Mitchell Scott

